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It is shown that one can explain the temperature dependence of the phonon conductivity of Ge
in the entire range from 2 to 1000 °K if the three-phonon relaxation rate is given by
Tapn | < g(w)T™De-®/oT  Three-phonon scattering processes are classified, after Guthrie, into
two groups: class I, which involves the annihilation of carrier phonons by combination, and

class II, which involves splitting of carrier phonons.

At all temperatures, the values of m(T)

for both classes of processes lie either definitely below or close to the upper limit of »(7) as

obtained by Guthrie.

I. INTRODUCTION

Recently Guthrie! has given an expression for
the three-phonon relaxation rate in the form

T < &) F(T) , (1)

where f(T)=T™ and m =m(T). Further, g(w)=w
for transverse phonons, and g(w)=w? for longitu-
dinal phonons. The value of m is found to be the
same for both normal and umklapp processes.
However, Klemens®™* has given an expression for
umklapp processes:

Tsm-l xg(w)T"e-@/aT . (2)

At low temperatures he has taken m = 4 for trans-
verse phonons and m = 3 for longitudinal phonons.
These temperature dependences are in agreement
with the findings of Herring.® At high temperatures,

Klemens took m =1 for both polarization branches.
Except Joshi and Verma, ® who have taken different
values of m in the different temperature ranges

(m =1-4 for transverse phonons and m =1-3 for
longitudinal phonons), other workers have used

the expressions given by Herring and Klemens.
Since m, according to Guthrie, is a continuous
function of temperature, m=m(T), the use of dif-
ferent values of m in the different temperature
regions is only a partial solution of the problem.
In view of this inadequacy, we prefer to incor-
porate Guthrie’s idea of the temperature dependence
of m by writing the three-phonon scattering re-
laxation rate as

- (T) ,-o/aT
Taph locg(w)T"' )e (]

___Bg(w)Tm(T)e- e/aT . (3)
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This expression differs from Klemens’s in that
here m is a function of temperature, and one does
not assign discrete values tom (e.g., m=4or 3
at low temperatures and m =1 at high temperatures).

According to Guthrie, thermal transport by
phonons takes place in two different ways: class I
events in which the heat carrier phonon is annihi-
lated by combination of phonons and class II events
in which the carrier phonon is annihilated by split-
ting. This classification leads to participation of
transverse phonons alone in class I events whereas
longitudinal phonons participate in both the events,
class I as well as class II. However, Guthrie has
not given any procedure to find out m(T) except
that he has given the upper and lower bounds of .
The only other hints are that m, besides its depen-
dence on the temperature, varies with the nature
of the events as well as the polarization. In view
of the fact that m can lie anywhere between its upper
and lower bounds, there still remains a great
amount of uncertainty in taking any suitable value
of m. To avoid these uncertainties, we define
Mmg(T), which is given by

[ mav(T)]Guthrie = ‘é’[m upper bomd(T) +Miower bound(T)] .

(4)
The factor m,,(T) is not necessarily equal to the
true or correct value of m(7T), which is needed to
explain the phonon-conductivity results. At high
temperatures where both the upper and lower
bounds of m(T) approach the same values, the true
value of m(T) should be same as the average value
of m(T). For low temperatures, where phonon-
phonon scattering processes make an appreciable
contribution to the thermal resistance, the rela-
tion between the true and average values of m(T)
can be expressed as

tm(T) L, 11 [ 1,11
T me )]True =T m“(T)]Guthrh(l + @,/QT). (5)

Obviously for T>@,

[m(T)] 0 = (D

I,II
True Guthrie
Thus the three-phonon relaxation rate is given by

a1 tm(r 11 o /ar
Tapn =Bg(w)T ™y, €70/

:Bg(w)T[m”'(T”%}':tIhru(l +@/aT)e /T (6)

At high temperatures, e*®/*T~1 @/aT<«<1, and
[ma(T)]g k4o = 1. Hence Eq. (6) gives

T =Bg(w)T for T>0, )

which is the well-known result of Klemens, Hol-
land, " and Guthrie in semiconductors in the high-
temperature region. At low temperatures, ®/aT
> 1 and T4, is given by

Tsph-lzBlg(w)T(m“-l)e- e/aT , (8)

where B’ =B8/a. If g(w)=w? and m, =4, then it
reduces to the well-known result of Klemens and
Herring,

- -o/aT
Tapn l=B’sz36 of/a

for longitudinal phonons at low temperatures.

The choice of the relations, Egs. (5) and (6), is
guided by the high- and low-temperature approxi-
mations of the temperature dependence of three-
phonon relaxation rate as obtained by Peierls, 8
Herring, ° Klemens, ~* Holland, 7 and Guthrie. !
These two approximations are contained in the
factor 1+ ®/aT) in terms of T>» ® and T<< ® .
For intermediate temperatures or for T~®, both
the terms of the factor (1+@®/aT) are important.
The greatest support for the single relation for the
temperature dependence of the three-phonon relax-
ation rate in the entire temperature range 2-1000
°K comes from the fact that it explains the phonon-
conductivity results for Ge very well over the
whole range. Use of Egs. (5) and (6) is necessary
as long as one wants to incorporate the average
values of m obtained by Guthrie for the correct
description of the temperature dependence of three-
phonon relaxation rate.

Holland” was the first to distinguish between
longitudinal and transverse phonons as separate
carriers of thermal energy. He also took into
account the dispersion of different phonon branches.
However, he used ¢ =w/v in replacing v, /v2 by
1/v in the conductivity integrals for longitudinal
phonons and for transverse phonons. For this we
have used a much more realistic relation given by®

d= (/D)1 +yw? , (9)

where 7 is a constant, which can be calculated
from the dispersion curve by the relation

y=1/w?(qv/w-1) . (10)
Then v,/v2 is replaced by

1 (L+yw??

v (1+3ywd)

in the conductivity integrals. If there is no dis-
persion in the phonon branch, =0, then v,/v2=1/v
as taken by Holland.

There is another very important aspect of the
present calculations. This will be more evident
if we reproduce Guthrie’s table for Si and Ge (see
Table I).

This shows that the temperature dependence of
the three-phonon relaxation rate has not been taken
into account properly in the earlier calculations of
phonon conductivity of Ge or Si. However, in the
present calculations m is a continuous function of
temperature and is either below or close to the
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TABLE I. Guthrie’s limits for the exponent m for Ge and Si.?
Assumption Assumption
of wT* rela- of w?T3rela- T <T™ o < T™ Tom™ <T™
tion invalid tion invalid where m <4 where m <3 where m <2
for T> for T> if T> if T> if T>
Material (°K) (°K) (°K) (°K) (°K)
Ge 20 26 90 115 167
Si 43 55 149 190 282
2See Table II of Ref. 1.
upper limit at different temperatures. Thus the Hence the average of m for class II events is given

present calculations are the only calculations in
which the temperature dependence of the three-
phonon relaxation rate has been taken into account
properly. In view of the continuous nature of the
function m =m(T), the interpretation of the high-
temperature data is consistent with low-temperature
results, and there is no need to involve different
temperature dependences in the different regions.
Another significant feature of the present approach
is the use of Guthrie’s classification of three-phonon
scattering events for the first time into the calcula-
tions of phonon conductivity.

II. THEORY

Guthrie has classified three-phonon scattering
events into two classes, class I in which the car-
rier phonon is annihilated by combination with other
phonons and class II when the carrier phonon is
annihilated by splitting. According to Guthrie the
three-phonon relaxation rate is given by

"':a»h-1 ‘xg(w)TM(T) (11)

The function g(w) may be equal to w? for longitudinal

phonons and w for transverse phonons. The most

important aspect of this equation is that m is a

continuous function of the temperature. Guthrie

has obtained the maximum and minimum values

of m as a function of temperature for both classes.
For class-I events, we find

Mmax(T) = {¥max[2(€¥max = 1)1 4 1] -1} | (12)
mmin(T)= 1.0 ) (13)
where

Xmax =R W max/ k0T
The average value of m for class I events is given
by

(740 (T) ] = Xpax(€™m3x = 1)1 4.0, 5 xp0, - (14)

Similarly for class II events, the upper and lower

bounds of m are given by
Mpax(T)=1.0 (15)

M pin(T) = Xppgg(€¥m2x — 1)1 £0+5¥max (16)

by
[mav(T)]I! =0. 5xm“e°'5"mu(exmu - 1)..1 +0.5
am

In view of the fact that it is not possible to ex-
plain the phonon-conductivity results of Ge in the
entire temperature range 2-1000 °K, without an
exponential factor e °® / T we have taken Klemens’s
form for the three-phonon relaxation rate. The
three-phonon relaxation rate, which has been suc-
cessfully used in the present calculation, is of the

form

- (T) ,-0/aT
Topn < gW)T™ e /o

:Bg(w)Tm(T)e-G)/uT (18)

This expression differs from the expression used
by Klemens in the sense that m instead of taking
discrete values, say, 4, 3, or 1, is a continuous
function of the temperature. This idea is borrowed
from Guthrie’s work. Further, this differs from
Guthrie’s expression for 74! equation (11), which
does not contain the exponential factor e~ e/eT  1n
three-phonon scattering, the relaxation rate is
further expressed as

Topn = Tapnt (Class 1)+ T4, (class II). (19)

Since class II events are absent for transverse
phonons, we have

TmT'l(T)e-elaT (20)
’

where g(w)=w for transverse phonons. The suffix

T for B and m refers to transverse phonons, and

suffix I refers to class I events. Similarly, for

longitudinal phonons

[Tayn-l]’l‘rana =B 7,1

-1 _ 2 pmp 1(T) ,- ©/aT
[Tgph ]Long‘BL,Iw T ' e

+BL uwZTmL’u(T)e- G/aT, (21)
where g(w) =w?for longitudinal phonons. The suffix
L on B as well as m refers to class II events. For

longitudinal phonons both events, class I and class
II, are possible.
Taking the 1n of both sides of Eq. (5), one ob-
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tains the following expressions of my 1 for the dif-
ferent polarization branches:

7,1 T,1 In1+0@/aT)
[m(T)]Tm:mT"(T)z [ ‘V(T)]Guthrlo+T ’

L, In(1+@/aT)
[’WL(T)]'I‘NQ=Wll"l (T):[ T)]Guthrh ———_ln—T_— ’

(22)

L,I1 L,I1 In1+0/aT)
[‘WL(T)] Truo=ml"u(T)_ [ av( )]Guthrh T ’
where ® is the Debye temperature. Further the

values of m,(T) for the different polarization
branches can be obtained from Eqs. (14) and (17).
Thus

T,1

[7a0( )]Gumru = Xmag, 7(€7ma%T —

1)1 40.5%ma, 1 »

[ (D)o

Xmax, L(e max, L—l) l+0 5xmn.L y

(23)

Guthric

[ oD

=0.5x%x eo's"m“.T
Guthrie max, T

X(e*max,7 = 1)1+ 0.5 ,
where

Xmax, L =ﬁwmax,L/k0T xmax,Tzﬁwmax.T/kOT s
and Wpay,z aNd Wy, r are the zone-boundary fre-
quencies for the longitudinal- and transverse-
phonon branches. Since the values of [m,,(T)] !
[ a(T) )5t nte» 2N [moo(T)]T00 | can be calculated
with the help of Eqs. (23), values of my (T),
my,1(T), and my 11(T) are known from Eq. (22).

Thus in the expression for 7, for transverse
phonons, Eq. (20), there remains only one param-
eter By ; and in the similar expression for longi-
tudinal phonons, Eq. (21), there remain two pa-
rameters B, ;and By ;;, which one has to treat
as adjustable parameters.

Assuming the additivity of reciprocal times, the
combined relaxation time 7, is given by

LREDDIE SLEE S B (24)

where 7 refers to ith phonon scattering mechanism.
73 is the inverse of the boundary scattering relax-
ation time and is given by 73 =%/LF, where 7 is
the average phonon velocity, L is the character-
istic length (given by L =1.125'2 for a rectangular
cross section S), and F is geometrical factor.
The average phonon velocity 7 is given by 7 ' = %
X(2v5'+vi"). 7,7 is the inverse of the relaxation
time due to Rayleigh scattering of phonons by the
random distribution of point defects such as
isotopes. For the mass-difference scattering of
phonons this is given by

Guthrie’

1309

"=Aw4=[4—1‘%5- Zi)f,(l—m‘/ﬁ)z}w‘ . (25)

where V, is the atomic volume, m; is the mass of
the ith species of the atom, f; is the fractional
concentration of the ith species of the atom and
m is the average atomic mass.

Since we are using avera.ge phonon velocities in
the calculation of 75 and 'r,t , they are same for
longitudinal phonons and transverse phonons. The
combined relaxation time for the transverse phon-
ons is then given by

[1:']r =713 + Aw* + Bp 10T 1M e /2T | (26)
Similarly for longitudinal phonons

[}, = T2 +Aw*+ By qw? T"L1 M) g0 /T

+Bp i T 1M = 0/eT - (97)

Since 73 depends upon the geometry and A on the
impurity content of the sample, values of 73 and
A are fixed for a given sample. Especially in Ge,
these two parameters need no adjustment. The
experimental results of Ge as obtained by Holland
seem to be the good case for the verification of
our present ideas of three-phonon relaxation rate
and its temperature dependence. Thus values of
75 and A are taken from Holland’s paper. There
remain, therefore, only three parameters B 1,
B, 1, and By ;;, which may be determined for the
best fit between theoretical and experimental values
of phonon conductivity in the entire temperature
range 2-1000 °K.

Thus, introducing

- BT le"lT I(T) -0/ aT

[Taph-l]'rrua )

-1 _ 2 nm (T) -©/aT
[Tasn Jeong= Br, 1@ T"L: 1 e

2 T) -0/aT
+ By @ T, M em®/oT - (28)

instead of v,/12=1/v, Holland’s formulation of two-
mode conduction has been modified. We have
already mentioned in the introduction that Holland
used the relation V= w/{ for replacing v,/v; by

1/v, where v, is the group velocity and v, is the
phase velocity of phonons.

In view of the fact that this is a crude approxima-
tion for the dispersion curves for different polariza-
tion branches, we have used the relation q= (w/¥)
X(1+ rwz) to determine the ratio v,/v,z,. This ratio
is given by
v, (L+rwf)? 1

2 1+ A+37rB) v
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where » is a constant and can be determined from
the dispersion curves. If there is no dispersion in
the phonon branch, i.e., =0, v,/15=1/v, as has
been taken by Holland. The expression for the 7 is

r=(1/0?) (qv/w-1) .

The value of 7 is determined for the regions 0 to

3 Gmax 04 3 oy t0 ga, along two directions, say,
[100] and [111], and then its average is taken sep-
arately for the two regions. Thus in the case of Ge,
we obtain the following values of 7'% For transverse
phonons,

[7]otoq,,, /2=2-95%107" sec?,
[»"]
and for longitudinal phonons,

=1.13X107% gec? .

=8.28%x107%" sec?

amax /2 to ¢ max

B ll]
L7 Amax /2 to max

xte*(e* - 1)72

SHARMA, DUBEY, AND VERMA 4

TABLE II. Values of the various parameters used in
the analysis of phonon conductivity of Ge in the tempera-
ture range 2—1000 °K,

o, =96°K, ©, =108°K, ©, =208°K, ©; =319°K,
75! =1.96x10° sec™, Br,; =1.06 x10°° deg™
By 1=1.78x10"% secdeg™, By, ;; =1.0 x10"®sec deg™

©=376°K, A=2.4x10"* sec?, F=1,08

(VrD)ocuxw; =355 X10° cm/sec
(Vrdugcwewy =1-30%10° em/sec
(VLD ocucwy =4-92 x10% em/sec
(V1 2w gewewy =246 %10° cm/sec

As there is no dispersion for longitudinal phonons
in the range 0-3qp.,, i.e., the w-vs-¢ curve is a
straight line, 7 is zero for this range. Thus, the
modified version of Holland’s formulation of phonon
conductivity can be expressed as

(1+7rw??

. =E ko ko T 3 (o)t 0,/T
32\ & 1 ocwtay To+ Ty 1+ Bp g T T 770l (1,343 dx
0 ,

x4ex(ex_l)-2 2)2

(147w

-1 ©o/T
+(UT2) <wlw e/ 1 1 Ty ,-67aT 7
w " = =5
sz To +Tpy  +BrwT "I 27072t (14 377w

1/ T

dx] ) (29)

xle(e* - 1)2dx

3
Lk (BT\ (o 0y/T
3 2,”2 i L1 0<w<w4f T-81+Tnt-l+ BL,IszML '](T) e-@/aT +BL'Hw2TmL'n(T)e-G/OtT
0

(1+7"w??

Kp=
(0,)7 O/ xie*(e* - 1)2
+ ~ . —B
L2l wgcwcag T8 +Tpe L+ (B 10T 1T B 1 WP T " L™ T (14377749

O4/T
4

20.0

0.0}

8.0

5.0

Moo
[} o
o o

o
T

K (w cm™! de[') _—

1 I Il Il L1

dx . (30)

FIG. 1. Comparison of theoretical
values of phonon conductivity of Ge with
the experimental values in the range
2-1000 °K.
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FIG. 2. Temperature dependence of
the exponent m for longitudinal phonons
for three-phonon classIevents. Mmg(T)
is the maximum limit obtained by Guthrie,
my( T) is the average value of m(T) at
different temperatures obtained from the
maximum and minimum limits of Guthrie,
and my, ; (T) is the value used in the pres-
ent calculations.

1 Il Il Il
0 40 120 200 300 400 500 600 700
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The sum of the two contributions «x; and k, repre-
sents the observed phonon conductivity k. In Hol-
land’s formulation one of the considerations for
having two conductivity integrals for transverse
phonons was the fact that umklapp processes start
at $gma,. In the present approach the two integrals,
both for the transverse as well as longitudinal pho-
nons, are based on the nature of the dispersion
curve characterized by the different values of » and
vrr, in the different regions of the w-vs-g curves.
Assuming that heat transport at high tempera-
tures, say at 1000 °K, is entirely due to transverse
phonons, i.e., Kk =k, one can adjust the value of
the parameter By ;. Using this value of By ; one
can calculate the phonon conductivity « , in the en-
tire temperature range. The balance k - k=K is
the contributions due to longitudinal phonons. At
temperatures below 100 °K, my ;>my, y, T"L.1
>T™L.11 and the term containing 7 ™11 in (14,7"),

[m('r) ]
f !1, LOMJ PRESENT WORK

1LOp-—m—mm e

|
800

CLASS T (LONGITUDINAL) ,{mmagﬂ=l,0
GUTHRIE

Il 1
900 1000

may be neglected. Thus the parameter 3, ; is ad-
justed for «;, at 30 °K. Using this value of B, |,
one can adjust By ;; such that one can explain
in the entire temperature range. Finally, the sum
of k; and k; is compared with the experimental
values of phonon conductivity of Ge as obtained by
Holland. If the agreement between theory and ex-
periment is not good in certain regions, the values
of the parameters By, By 1, and B, ;; are again
varied slightly in the neighborhood of their previous
values for the best possible fit.

III. RESULTS

The values of the various parameters which have
been used to calculate the phonon conductivity of
Ge in the temperature range 2-1000 °K are given
in Table II. The theoretical values of phonon con-
ductivity of Ge are then compared with the experi-
mental values in Fig. 1, which shows the plot of

FIG. 3. Temperature dependence of
the exponent m for longitudinal phonons
for three-phonon class IIevents. My, (T)

m(T)—»

(Ml ™)] comurie
["""i"ﬁ ) ] GUTHRIE

is the maximum limit obtained by Guthrie,
may (T) is the average value of m(T) at
different temperatures obtained from the
maximum and minimum limits of Guthrie,
and myp,, 1 (T) is the value vsed in the pres-

1 L sent calculations.

L
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FIG. 4. Temperature dependence of
the exponent m for transverse phonons
for three-phonon class-I events. myp, (7)
is the maximum limit obtained by Guthrie,
myay (T) is the average value of m(T) ob-
tained from the maximum and minimum
limits of Guthrie, and mp,1 (T) is the

1 1 1 1 I -

value used in the present calculations.
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k vs T. It may be seen from Fig. 1 that except for
the slight deviations in the high-temperature region
the agreement is quite good. It may be further
noticed from this figure that the major contribution
to thermal conductivity comes from transverse
phonons. The values of m(7) at different tempera-
tures for transverse and longitudinal phonons as
well as for class I and II events are shown in Figs.
2—-4, These values of m in general lie either inbe-
tween the upper and lower bounds or in the neigh-
borhood of the upper bound of m, as obtained on the
basis of Guthrie’s relations.

It has been shown in the present work that the
most appropriate temperature dependence of three-
phonon relaxation rate is given by 74, '« g(w)

x T™T=®/ 2T gince m is a continuous function of
the temperature, itleadsto 7"'dependence for the con-
ductivity at high temperatures, which is in agree-
ment with the well-known experimental results.
Similarly, m at low temperatures tends to 4 for
transverse phonons and 3 for longitudinal phonons.
This is in agreement with the theoretical results of
Herring for the three-phonon-scattering relaxation
rate at low temperatures. It has been further sug-
gested in the present work that one can obtain the
values of m(7T) quite conveniently by

m(T) =m o(T) + G=m(T) +In(1+®/aT)/InT,

where @ is the Debye temperature and « is the con-
stant characteristic of the material. m,(7T) is the
average value of the upper and lower bounds of
m(T) obtained for Ge from the dispersion curves
with the help of Guthrie’s expressions. Previous
workers gave discrete values to m, such as m =4
for transverse phonons and m =3 for longitudinal

900 1000

phonons at low temperature and further m =1 for
both the polarizations at high temperatures. Here
m is taken to be the continuous function of the tem-
perature as has been suggested by Guthrie. How-
ever, in the temperature range where isotopic
scattering dominates over phonon-phonon scatter-
ing, the present relation for the temperature de-
pendence of the three-phonon relaxation rate is not
valid, as ¢ ®/*7 decreases very rapidly with tem-
perature and one needs large values of m to com-
pensate for the rapid decrease of the exponential
factor.

Another significant feature of the present calcu-
lations is the use of Guthrie’s classification of
three-phonon scattering events. In class I events
the carrier phonon is annihilated by combination and
and in class II the annihilation takes place by split-
ting. Thus 74, is expressed as

Tan = Tapn © (class I) + 74y (class II).
For transverse phonons this leads to
[Tan ™ Jrrans = By, TP T 1 Tle™ /T

as only class I events are possible.
nal phonons one obtains

For longitudi-

-1 _ 2mm (T) _-0/aT
[Taph ]Long"BL.IQ’ T7L.1 e

2 T) =6
+BL'11(JJ T"‘L,II( )e o/aT .

Another feature of the present approach is the use
of the dispersion relation = (w/¥)(1 +7w? to re-
place v,/vf in the conductivity integrals. This gives

v _ 1 (Q+7r0??
v‘: v (1+370) °
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where 7 is given by »=(1/w? (qv/w-1). The value
of 7 is determined for the regions 3 gmay t0 gmay and
0 to 3¢max from the dispersion curves.

In keeping with the ideas mentioned above, Hol-
lands’s formulation of two-mode conduction has
been modified. Theoretical values of phonon con-
ductivity are compared with Holland’s experimental
results in Ge. Good agreement has been obtained
between theory and experiment for Ge in the entire
temperature range 2—-1000 °K.

The present approach is successful for those ma-
terials for which umklapp processes dominate over
normal processes. Even if one used Callaway’s
model, one can show that the contribution due to
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three-phonon normal process is negligible in Ge.

At high temperatures 7;!>7,, "'+ 74!, and at low tem-
peratures T3 + T, ' + 7, > 73, with the result that
only umklapp processes made effective contribution
toward thermal resistance.
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